/*
 * QR Code generator library (compiled from TypeScript)
 *
 * Copyright (c) Project Nayuki. (MIT License)
 * https://www.nayuki.io/page/qr-code-generator-library
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy of
 * this software and associated documentation files (the "Software"), to deal in
 * the Software without restriction, including without limitation the rights to
 * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
 * the Software, and to permit persons to whom the Software is furnished to do so,
 * subject to the following conditions:
 * - The above copyright notice and this permission notice shall be included in
 *   all copies or substantial portions of the Software.
 * - The Software is provided "as is", without warranty of any kind, express or
 *   implied, including but not limited to the warranties of merchantability,
 *   fitness for a particular purpose and noninfringement. In no event shall the
 *   authors or copyright holders be liable for any claim, damages or other
 *   liability, whether in an action of contract, tort or otherwise, arising from,
 *   out of or in connection with the Software or the use or other dealings in the
 *   Software.
 */
"use strict";
var qrcodegen;
(function (qrcodegen) {
    /*---- QR Code symbol class ----*/
    /*
     * A QR Code symbol, which is a type of two-dimension barcode.
     * Invented by Denso Wave and described in the ISO/IEC 18004 standard.
     * Instances of this class represent an immutable square grid of dark and light cells.
     * The class provides static factory functions to create a QR Code from text or binary data.
     * The class covers the QR Code Model 2 specification, supporting all versions (sizes)
     * from 1 to 40, all 4 error correction levels, and 4 character encoding modes.
     *
     * Ways to create a QR Code object:
     * - High level: Take the payload data and call QrCode.encodeText() or QrCode.encodeBinary().
     * - Mid level: Custom-make the list of segments and call QrCode.encodeSegments().
     * - Low level: Custom-make the array of data codeword bytes (including
     *   segment headers and final padding, excluding error correction codewords),
     *   supply the appropriate version number, and call the QrCode() constructor.
     * (Note that all ways require supplying the desired error correction level.)
     */
    class QrCode {
        /*-- Constructor (low level) and fields --*/
        // Creates a new QR Code with the given version number,
        // error correction level, data codeword bytes, and mask number.
        // This is a low-level API that most users should not use directly.
        // A mid-level API is the encodeSegments() function.
        constructor(
        // The version number of this QR Code, which is between 1 and 40 (inclusive).
        // This determines the size of this barcode.
        version, 
        // The error correction level used in this QR Code.
        errorCorrectionLevel, dataCodewords, msk) {
            this.version = version;
            this.errorCorrectionLevel = errorCorrectionLevel;
            // The modules of this QR Code (false = light, true = dark).
            // Immutable after constructor finishes. Accessed through getModule().
            this.modules = [];
            // Indicates function modules that are not subjected to masking. Discarded when constructor finishes.
            this.isFunction = [];
            // Check scalar arguments
            if (version < QrCode.MIN_VERSION || version > QrCode.MAX_VERSION)
                throw new RangeError("Version value out of range");
            if (msk < -1 || msk > 7)
                throw new RangeError("Mask value out of range");
            this.size = version * 4 + 17;
            // Initialize both grids to be size*size arrays of Boolean false
            let row = [];
            for (let i = 0; i < this.size; i++)
                row.push(false);
            for (let i = 0; i < this.size; i++) {
                this.modules.push(row.slice()); // Initially all light
                this.isFunction.push(row.slice());
            }
            // Compute ECC, draw modules
            this.drawFunctionPatterns();
            const allCodewords = this.addEccAndInterleave(dataCodewords);
            this.drawCodewords(allCodewords);
            // Do masking
            if (msk == -1) { // Automatically choose best mask
                let minPenalty = 1000000000;
                for (let i = 0; i < 8; i++) {
                    this.applyMask(i);
                    this.drawFormatBits(i);
                    const penalty = this.getPenaltyScore();
                    if (penalty < minPenalty) {
                        msk = i;
                        minPenalty = penalty;
                    }
                    this.applyMask(i); // Undoes the mask due to XOR
                }
            }
            assert(0 <= msk && msk <= 7);
            this.mask = msk;
            this.applyMask(msk); // Apply the final choice of mask
            this.drawFormatBits(msk); // Overwrite old format bits
            this.isFunction = [];
        }
        /*-- Static factory functions (high level) --*/
        // Returns a QR Code representing the given Unicode text string at the given error correction level.
        // As a conservative upper bound, this function is guaranteed to succeed for strings that have 738 or fewer
        // Unicode code points (not UTF-16 code units) if the low error correction level is used. The smallest possible
        // QR Code version is automatically chosen for the output. The ECC level of the result may be higher than the
        // ecl argument if it can be done without increasing the version.
        static encodeText(text, ecl) {
            const segs = qrcodegen.QrSegment.makeSegments(text);
            return QrCode.encodeSegments(segs, ecl);
        }
        // Returns a QR Code representing the given binary data at the given error correction level.
        // This function always encodes using the binary segment mode, not any text mode. The maximum number of
        // bytes allowed is 2953. The smallest possible QR Code version is automatically chosen for the output.
        // The ECC level of the result may be higher than the ecl argument if it can be done without increasing the version.
        static encodeBinary(data, ecl) {
            const seg = qrcodegen.QrSegment.makeBytes(data);
            return QrCode.encodeSegments([seg], ecl);
        }
        /*-- Static factory functions (mid level) --*/
        // Returns a QR Code representing the given segments with the given encoding parameters.
        // The smallest possible QR Code version within the given range is automatically
        // chosen for the output. Iff boostEcl is true, then the ECC level of the result
        // may be higher than the ecl argument if it can be done without increasing the
        // version. The mask number is either between 0 to 7 (inclusive) to force that
        // mask, or -1 to automatically choose an appropriate mask (which may be slow).
        // This function allows the user to create a custom sequence of segments that switches
        // between modes (such as alphanumeric and byte) to encode text in less space.
        // This is a mid-level API; the high-level API is encodeText() and encodeBinary().
        static encodeSegments(segs, ecl, minVersion = 1, maxVersion = 40, mask = -1, boostEcl = true) {
            if (!(QrCode.MIN_VERSION <= minVersion && minVersion <= maxVersion && maxVersion <= QrCode.MAX_VERSION)
                || mask < -1 || mask > 7)
                throw new RangeError("Invalid value");
            // Find the minimal version number to use
            let version;
            let dataUsedBits;
            for (version = minVersion;; version++) {
                const dataCapacityBits = QrCode.getNumDataCodewords(version, ecl) * 8; // Number of data bits available
                const usedBits = QrSegment.getTotalBits(segs, version);
                if (usedBits <= dataCapacityBits) {
                    dataUsedBits = usedBits;
                    break; // This version number is found to be suitable
                }
                if (version >= maxVersion) // All versions in the range could not fit the given data
                    throw new RangeError("Data too long");
            }
            // Increase the error correction level while the data still fits in the current version number
            for (const newEcl of [QrCode.Ecc.MEDIUM, QrCode.Ecc.QUARTILE, QrCode.Ecc.HIGH]) { // From low to high
                if (boostEcl && dataUsedBits <= QrCode.getNumDataCodewords(version, newEcl) * 8)
                    ecl = newEcl;
            }
            // Concatenate all segments to create the data bit string
            let bb = [];
            for (const seg of segs) {
                appendBits(seg.mode.modeBits, 4, bb);
                appendBits(seg.numChars, seg.mode.numCharCountBits(version), bb);
                for (const b of seg.getData())
                    bb.push(b);
            }
            assert(bb.length == dataUsedBits);
            // Add terminator and pad up to a byte if applicable
            const dataCapacityBits = QrCode.getNumDataCodewords(version, ecl) * 8;
            assert(bb.length <= dataCapacityBits);
            appendBits(0, Math.min(4, dataCapacityBits - bb.length), bb);
            appendBits(0, (8 - bb.length % 8) % 8, bb);
            assert(bb.length % 8 == 0);
            // Pad with alternating bytes until data capacity is reached
            for (let padByte = 0xEC; bb.length < dataCapacityBits; padByte ^= 0xEC ^ 0x11)
                appendBits(padByte, 8, bb);
            // Pack bits into bytes in big endian
            let dataCodewords = [];
            while (dataCodewords.length * 8 < bb.length)
                dataCodewords.push(0);
            bb.forEach((b, i) => dataCodewords[i >>> 3] |= b << (7 - (i & 7)));
            // Create the QR Code object
            return new QrCode(version, ecl, dataCodewords, mask);
        }
        /*-- Accessor methods --*/
        // Returns the color of the module (pixel) at the given coordinates, which is false
        // for light or true for dark. The top left corner has the coordinates (x=0, y=0).
        // If the given coordinates are out of bounds, then false (light) is returned.
        getModule(x, y) {
            return 0 <= x && x < this.size && 0 <= y && y < this.size && this.modules[y][x];
        }
        /*-- Private helper methods for constructor: Drawing function modules --*/
        // Reads this object's version field, and draws and marks all function modules.
        drawFunctionPatterns() {
            // Draw horizontal and vertical timing patterns
            for (let i = 0; i < this.size; i++) {
                this.setFunctionModule(6, i, i % 2 == 0);
                this.setFunctionModule(i, 6, i % 2 == 0);
            }
            // Draw 3 finder patterns (all corners except bottom right; overwrites some timing modules)
            this.drawFinderPattern(3, 3);
            this.drawFinderPattern(this.size - 4, 3);
            this.drawFinderPattern(3, this.size - 4);
            // Draw numerous alignment patterns
            const alignPatPos = this.getAlignmentPatternPositions();
            const numAlign = alignPatPos.length;
            for (let i = 0; i < numAlign; i++) {
                for (let j = 0; j < numAlign; j++) {
                    // Don't draw on the three finder corners
                    if (!(i == 0 && j == 0 || i == 0 && j == numAlign - 1 || i == numAlign - 1 && j == 0))
                        this.drawAlignmentPattern(alignPatPos[i], alignPatPos[j]);
                }
            }
            // Draw configuration data
            this.drawFormatBits(0); // Dummy mask value; overwritten later in the constructor
            this.drawVersion();
        }
        // Draws two copies of the format bits (with its own error correction code)
        // based on the given mask and this object's error correction level field.
        drawFormatBits(mask) {
            // Calculate error correction code and pack bits
            const data = this.errorCorrectionLevel.formatBits << 3 | mask; // errCorrLvl is uint2, mask is uint3
            let rem = data;
            for (let i = 0; i < 10; i++)
                rem = (rem << 1) ^ ((rem >>> 9) * 0x537);
            const bits = (data << 10 | rem) ^ 0x5412; // uint15
            assert(bits >>> 15 == 0);
            // Draw first copy
            for (let i = 0; i <= 5; i++)
                this.setFunctionModule(8, i, getBit(bits, i));
            this.setFunctionModule(8, 7, getBit(bits, 6));
            this.setFunctionModule(8, 8, getBit(bits, 7));
            this.setFunctionModule(7, 8, getBit(bits, 8));
            for (let i = 9; i < 15; i++)
                this.setFunctionModule(14 - i, 8, getBit(bits, i));
            // Draw second copy
            for (let i = 0; i < 8; i++)
                this.setFunctionModule(this.size - 1 - i, 8, getBit(bits, i));
            for (let i = 8; i < 15; i++)
                this.setFunctionModule(8, this.size - 15 + i, getBit(bits, i));
            this.setFunctionModule(8, this.size - 8, true); // Always dark
        }
        // Draws two copies of the version bits (with its own error correction code),
        // based on this object's version field, iff 7 <= version <= 40.
        drawVersion() {
            if (this.version < 7)
                return;
            // Calculate error correction code and pack bits
            let rem = this.version; // version is uint6, in the range [7, 40]
            for (let i = 0; i < 12; i++)
                rem = (rem << 1) ^ ((rem >>> 11) * 0x1F25);
            const bits = this.version << 12 | rem; // uint18
            assert(bits >>> 18 == 0);
            // Draw two copies
            for (let i = 0; i < 18; i++) {
                const color = getBit(bits, i);
                const a = this.size - 11 + i % 3;
                const b = Math.floor(i / 3);
                this.setFunctionModule(a, b, color);
                this.setFunctionModule(b, a, color);
            }
        }
        // Draws a 9*9 finder pattern including the border separator,
        // with the center module at (x, y). Modules can be out of bounds.
        drawFinderPattern(x, y) {
            for (let dy = -4; dy <= 4; dy++) {
                for (let dx = -4; dx <= 4; dx++) {
                    const dist = Math.max(Math.abs(dx), Math.abs(dy)); // Chebyshev/infinity norm
                    const xx = x + dx;
                    const yy = y + dy;
                    if (0 <= xx && xx < this.size && 0 <= yy && yy < this.size)
                        this.setFunctionModule(xx, yy, dist != 2 && dist != 4);
                }
            }
        }
        // Draws a 5*5 alignment pattern, with the center module
        // at (x, y). All modules must be in bounds.
        drawAlignmentPattern(x, y) {
            for (let dy = -2; dy <= 2; dy++) {
                for (let dx = -2; dx <= 2; dx++)
                    this.setFunctionModule(x + dx, y + dy, Math.max(Math.abs(dx), Math.abs(dy)) != 1);
            }
        }
        // Sets the color of a module and marks it as a function module.
        // Only used by the constructor. Coordinates must be in bounds.
        setFunctionModule(x, y, isDark) {
            this.modules[y][x] = isDark;
            this.isFunction[y][x] = true;
        }
        /*-- Private helper methods for constructor: Codewords and masking --*/
        // Returns a new byte string representing the given data with the appropriate error correction
        // codewords appended to it, based on this object's version and error correction level.
        addEccAndInterleave(data) {
            const ver = this.version;
            const ecl = this.errorCorrectionLevel;
            if (data.length != QrCode.getNumDataCodewords(ver, ecl))
                throw new RangeError("Invalid argument");
            // Calculate parameter numbers
            const numBlocks = QrCode.NUM_ERROR_CORRECTION_BLOCKS[ecl.ordinal][ver];
            const blockEccLen = QrCode.ECC_CODEWORDS_PER_BLOCK[ecl.ordinal][ver];
            const rawCodewords = Math.floor(QrCode.getNumRawDataModules(ver) / 8);
            const numShortBlocks = numBlocks - rawCodewords % numBlocks;
            const shortBlockLen = Math.floor(rawCodewords / numBlocks);
            // Split data into blocks and append ECC to each block
            let blocks = [];
            const rsDiv = QrCode.reedSolomonComputeDivisor(blockEccLen);
            for (let i = 0, k = 0; i < numBlocks; i++) {
                let dat = data.slice(k, k + shortBlockLen - blockEccLen + (i < numShortBlocks ? 0 : 1));
                k += dat.length;
                const ecc = QrCode.reedSolomonComputeRemainder(dat, rsDiv);
                if (i < numShortBlocks)
                    dat.push(0);
                blocks.push(dat.concat(ecc));
            }
            // Interleave (not concatenate) the bytes from every block into a single sequence
            let result = [];
            for (let i = 0; i < blocks[0].length; i++) {
                blocks.forEach((block, j) => {
                    // Skip the padding byte in short blocks
                    if (i != shortBlockLen - blockEccLen || j >= numShortBlocks)
                        result.push(block[i]);
                });
            }
            assert(result.length == rawCodewords);
            return result;
        }
        // Draws the given sequence of 8-bit codewords (data and error correction) onto the entire
        // data area of this QR Code. Function modules need to be marked off before this is called.
        drawCodewords(data) {
            if (data.length != Math.floor(QrCode.getNumRawDataModules(this.version) / 8))
                throw new RangeError("Invalid argument");
            let i = 0; // Bit index into the data
            // Do the funny zigzag scan
            for (let right = this.size - 1; right >= 1; right -= 2) { // Index of right column in each column pair
                if (right == 6)
                    right = 5;
                for (let vert = 0; vert < this.size; vert++) { // Vertical counter
                    for (let j = 0; j < 2; j++) {
                        const x = right - j; // Actual x coordinate
                        const upward = ((right + 1) & 2) == 0;
                        const y = upward ? this.size - 1 - vert : vert; // Actual y coordinate
                        if (!this.isFunction[y][x] && i < data.length * 8) {
                            this.modules[y][x] = getBit(data[i >>> 3], 7 - (i & 7));
                            i++;
                        }
                        // If this QR Code has any remainder bits (0 to 7), they were assigned as
                        // 0/false/light by the constructor and are left unchanged by this method
                    }
                }
            }
            assert(i == data.length * 8);
        }
        // XORs the codeword modules in this QR Code with the given mask pattern.
        // The function modules must be marked and the codeword bits must be drawn
        // before masking. Due to the arithmetic of XOR, calling applyMask() with
        // the same mask value a second time will undo the mask. A final well-formed
        // QR Code needs exactly one (not zero, two, etc.) mask applied.
        applyMask(mask) {
            if (mask < 0 || mask > 7)
                throw new RangeError("Mask value out of range");
            for (let y = 0; y < this.size; y++) {
                for (let x = 0; x < this.size; x++) {
                    let invert;
                    switch (mask) {
                        case 0:
                            invert = (x + y) % 2 == 0;
                            break;
                        case 1:
                            invert = y % 2 == 0;
                            break;
                        case 2:
                            invert = x % 3 == 0;
                            break;
                        case 3:
                            invert = (x + y) % 3 == 0;
                            break;
                        case 4:
                            invert = (Math.floor(x / 3) + Math.floor(y / 2)) % 2 == 0;
                            break;
                        case 5:
                            invert = x * y % 2 + x * y % 3 == 0;
                            break;
                        case 6:
                            invert = (x * y % 2 + x * y % 3) % 2 == 0;
                            break;
                        case 7:
                            invert = ((x + y) % 2 + x * y % 3) % 2 == 0;
                            break;
                        default: throw new Error("Unreachable");
                    }
                    if (!this.isFunction[y][x] && invert)
                        this.modules[y][x] = !this.modules[y][x];
                }
            }
        }
        // Calculates and returns the penalty score based on state of this QR Code's current modules.
        // This is used by the automatic mask choice algorithm to find the mask pattern that yields the lowest score.
        getPenaltyScore() {
            let result = 0;
            // Adjacent modules in row having same color, and finder-like patterns
            for (let y = 0; y < this.size; y++) {
                let runColor = false;
                let runX = 0;
                let runHistory = [0, 0, 0, 0, 0, 0, 0];
                for (let x = 0; x < this.size; x++) {
                    if (this.modules[y][x] == runColor) {
                        runX++;
                        if (runX == 5)
                            result += QrCode.PENALTY_N1;
                        else if (runX > 5)
                            result++;
                    }
                    else {
                        this.finderPenaltyAddHistory(runX, runHistory);
                        if (!runColor)
                            result += this.finderPenaltyCountPatterns(runHistory) * QrCode.PENALTY_N3;
                        runColor = this.modules[y][x];
                        runX = 1;
                    }
                }
                result += this.finderPenaltyTerminateAndCount(runColor, runX, runHistory) * QrCode.PENALTY_N3;
            }
            // Adjacent modules in column having same color, and finder-like patterns
            for (let x = 0; x < this.size; x++) {
                let runColor = false;
                let runY = 0;
                let runHistory = [0, 0, 0, 0, 0, 0, 0];
                for (let y = 0; y < this.size; y++) {
                    if (this.modules[y][x] == runColor) {
                        runY++;
                        if (runY == 5)
                            result += QrCode.PENALTY_N1;
                        else if (runY > 5)
                            result++;
                    }
                    else {
                        this.finderPenaltyAddHistory(runY, runHistory);
                        if (!runColor)
                            result += this.finderPenaltyCountPatterns(runHistory) * QrCode.PENALTY_N3;
                        runColor = this.modules[y][x];
                        runY = 1;
                    }
                }
                result += this.finderPenaltyTerminateAndCount(runColor, runY, runHistory) * QrCode.PENALTY_N3;
            }
            // 2*2 blocks of modules having same color
            for (let y = 0; y < this.size - 1; y++) {
                for (let x = 0; x < this.size - 1; x++) {
                    const color = this.modules[y][x];
                    if (color == this.modules[y][x + 1] &&
                        color == this.modules[y + 1][x] &&
                        color == this.modules[y + 1][x + 1])
                        result += QrCode.PENALTY_N2;
                }
            }
            // Balance of dark and light modules
            let dark = 0;
            for (const row of this.modules)
                dark = row.reduce((sum, color) => sum + (color ? 1 : 0), dark);
            const total = this.size * this.size; // Note that size is odd, so dark/total != 1/2
            // Compute the smallest integer k >= 0 such that (45-5k)% <= dark/total <= (55+5k)%
            const k = Math.ceil(Math.abs(dark * 20 - total * 10) / total) - 1;
            assert(0 <= k && k <= 9);
            result += k * QrCode.PENALTY_N4;
            assert(0 <= result && result <= 2568888); // Non-tight upper bound based on default values of PENALTY_N1, ..., N4
            return result;
        }
        /*-- Private helper functions --*/
        // Returns an ascending list of positions of alignment patterns for this version number.
        // Each position is in the range [0,177), and are used on both the x and y axes.
        // This could be implemented as lookup table of 40 variable-length lists of integers.
        getAlignmentPatternPositions() {
            if (this.version == 1)
                return [];
            else {
                const numAlign = Math.floor(this.version / 7) + 2;
                const step = (this.version == 32) ? 26 :
                    Math.ceil((this.version * 4 + 4) / (numAlign * 2 - 2)) * 2;
                let result = [6];
                for (let pos = this.size - 7; result.length < numAlign; pos -= step)
                    result.splice(1, 0, pos);
                return result;
            }
        }
        // Returns the number of data bits that can be stored in a QR Code of the given version number, after
        // all function modules are excluded. This includes remainder bits, so it might not be a multiple of 8.
        // The result is in the range [208, 29648]. This could be implemented as a 40-entry lookup table.
        static getNumRawDataModules(ver) {
            if (ver < QrCode.MIN_VERSION || ver > QrCode.MAX_VERSION)
                throw new RangeError("Version number out of range");
            let result = (16 * ver + 128) * ver + 64;
            if (ver >= 2) {
                const numAlign = Math.floor(ver / 7) + 2;
                result -= (25 * numAlign - 10) * numAlign - 55;
                if (ver >= 7)
                    result -= 36;
            }
            assert(208 <= result && result <= 29648);
            return result;
        }
        // Returns the number of 8-bit data (i.e. not error correction) codewords contained in any
        // QR Code of the given version number and error correction level, with remainder bits discarded.
        // This stateless pure function could be implemented as a (40*4)-cell lookup table.
        static getNumDataCodewords(ver, ecl) {
            return Math.floor(QrCode.getNumRawDataModules(ver) / 8) -
                QrCode.ECC_CODEWORDS_PER_BLOCK[ecl.ordinal][ver] *
                    QrCode.NUM_ERROR_CORRECTION_BLOCKS[ecl.ordinal][ver];
        }
        // Returns a Reed-Solomon ECC generator polynomial for the given degree. This could be
        // implemented as a lookup table over all possible parameter values, instead of as an algorithm.
        static reedSolomonComputeDivisor(degree) {
            if (degree < 1 || degree > 255)
                throw new RangeError("Degree out of range");
            // Polynomial coefficients are stored from highest to lowest power, excluding the leading term which is always 1.
            // For example the polynomial x^3 + 255x^2 + 8x + 93 is stored as the uint8 array [255, 8, 93].
            let result = [];
            for (let i = 0; i < degree - 1; i++)
                result.push(0);
            result.push(1); // Start off with the monomial x^0
            // Compute the product polynomial (x - r^0) * (x - r^1) * (x - r^2) * ... * (x - r^{degree-1}),
            // and drop the highest monomial term which is always 1x^degree.
            // Note that r = 0x02, which is a generator element of this field GF(2^8/0x11D).
            let root = 1;
            for (let i = 0; i < degree; i++) {
                // Multiply the current product by (x - r^i)
                for (let j = 0; j < result.length; j++) {
                    result[j] = QrCode.reedSolomonMultiply(result[j], root);
                    if (j + 1 < result.length)
                        result[j] ^= result[j + 1];
                }
                root = QrCode.reedSolomonMultiply(root, 0x02);
            }
            return result;
        }
        // Returns the Reed-Solomon error correction codeword for the given data and divisor polynomials.
        static reedSolomonComputeRemainder(data, divisor) {
            let result = divisor.map(_ => 0);
            for (const b of data) { // Polynomial division
                const factor = b ^ result.shift();
                result.push(0);
                divisor.forEach((coef, i) => result[i] ^= QrCode.reedSolomonMultiply(coef, factor));
            }
            return result;
        }
        // Returns the product of the two given field elements modulo GF(2^8/0x11D). The arguments and result
        // are unsigned 8-bit integers. This could be implemented as a lookup table of 256*256 entries of uint8.
        static reedSolomonMultiply(x, y) {
            if (x >>> 8 != 0 || y >>> 8 != 0)
                throw new RangeError("Byte out of range");
            // Russian peasant multiplication
            let z = 0;
            for (let i = 7; i >= 0; i--) {
                z = (z << 1) ^ ((z >>> 7) * 0x11D);
                z ^= ((y >>> i) & 1) * x;
            }
            assert(z >>> 8 == 0);
            return z;
        }
        // Can only be called immediately after a light run is added, and
        // returns either 0, 1, or 2. A helper function for getPenaltyScore().
        finderPenaltyCountPatterns(runHistory) {
            const n = runHistory[1];
            assert(n <= this.size * 3);
            const core = n > 0 && runHistory[2] == n && runHistory[3] == n * 3 && runHistory[4] == n && runHistory[5] == n;
            return (core && runHistory[0] >= n * 4 && runHistory[6] >= n ? 1 : 0)
                + (core && runHistory[6] >= n * 4 && runHistory[0] >= n ? 1 : 0);
        }
        // Must be called at the end of a line (row or column) of modules. A helper function for getPenaltyScore().
        finderPenaltyTerminateAndCount(currentRunColor, currentRunLength, runHistory) {
            if (currentRunColor) { // Terminate dark run
                this.finderPenaltyAddHistory(currentRunLength, runHistory);
                currentRunLength = 0;
            }
            currentRunLength += this.size; // Add light border to final run
            this.finderPenaltyAddHistory(currentRunLength, runHistory);
            return this.finderPenaltyCountPatterns(runHistory);
        }
        // Pushes the given value to the front and drops the last value. A helper function for getPenaltyScore().
        finderPenaltyAddHistory(currentRunLength, runHistory) {
            if (runHistory[0] == 0)
                currentRunLength += this.size; // Add light border to initial run
            runHistory.pop();
            runHistory.unshift(currentRunLength);
        }
    }
    /*-- Constants and tables --*/
    // The minimum version number supported in the QR Code Model 2 standard.
    QrCode.MIN_VERSION = 1;
    // The maximum version number supported in the QR Code Model 2 standard.
    QrCode.MAX_VERSION = 40;
    // For use in getPenaltyScore(), when evaluating which mask is best.
    QrCode.PENALTY_N1 = 3;
    QrCode.PENALTY_N2 = 3;
    QrCode.PENALTY_N3 = 40;
    QrCode.PENALTY_N4 = 10;
    QrCode.ECC_CODEWORDS_PER_BLOCK = [
        // Version: (note that index 0 is for padding, and is set to an illegal value)
        //0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40    Error correction level
        [-1, 7, 10, 15, 20, 26, 18, 20, 24, 30, 18, 20, 24, 26, 30, 22, 24, 28, 30, 28, 28, 28, 28, 30, 30, 26, 28, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30],
        [-1, 10, 16, 26, 18, 24, 16, 18, 22, 22, 26, 30, 22, 22, 24, 24, 28, 28, 26, 26, 26, 26, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28],
        [-1, 13, 22, 18, 26, 18, 24, 18, 22, 20, 24, 28, 26, 24, 20, 30, 24, 28, 28, 26, 30, 28, 30, 30, 30, 30, 28, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30],
        [-1, 17, 28, 22, 16, 22, 28, 26, 26, 24, 28, 24, 28, 22, 24, 24, 30, 28, 28, 26, 28, 30, 24, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30], // High
    ];
    QrCode.NUM_ERROR_CORRECTION_BLOCKS = [
        // Version: (note that index 0 is for padding, and is set to an illegal value)
        //0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40    Error correction level
        [-1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 4, 4, 4, 4, 4, 6, 6, 6, 6, 7, 8, 8, 9, 9, 10, 12, 12, 12, 13, 14, 15, 16, 17, 18, 19, 19, 20, 21, 22, 24, 25],
        [-1, 1, 1, 1, 2, 2, 4, 4, 4, 5, 5, 5, 8, 9, 9, 10, 10, 11, 13, 14, 16, 17, 17, 18, 20, 21, 23, 25, 26, 28, 29, 31, 33, 35, 37, 38, 40, 43, 45, 47, 49],
        [-1, 1, 1, 2, 2, 4, 4, 6, 6, 8, 8, 8, 10, 12, 16, 12, 17, 16, 18, 21, 20, 23, 23, 25, 27, 29, 34, 34, 35, 38, 40, 43, 45, 48, 51, 53, 56, 59, 62, 65, 68],
        [-1, 1, 1, 2, 4, 4, 4, 5, 6, 8, 8, 11, 11, 16, 16, 18, 16, 19, 21, 25, 25, 25, 34, 30, 32, 35, 37, 40, 42, 45, 48, 51, 54, 57, 60, 63, 66, 70, 74, 77, 81], // High
    ];
    qrcodegen.QrCode = QrCode;
    // Appends the given number of low-order bits of the given value
    // to the given buffer. Requires 0 <= len <= 31 and 0 <= val < 2^len.
    function appendBits(val, len, bb) {
        if (len < 0 || len > 31 || val >>> len != 0)
            throw new RangeError("Value out of range");
        for (let i = len - 1; i >= 0; i--) // Append bit by bit
            bb.push((val >>> i) & 1);
    }
    // Returns true iff the i'th bit of x is set to 1.
    function getBit(x, i) {
        return ((x >>> i) & 1) != 0;
    }
    // Throws an exception if the given condition is false.
    function assert(cond) {
        if (!cond)
            throw new Error("Assertion error");
    }
    /*---- Data segment class ----*/
    /*
     * A segment of character/binary/control data in a QR Code symbol.
     * Instances of this class are immutable.
     * The mid-level way to create a segment is to take the payload data
     * and call a static factory function such as QrSegment.makeNumeric().
     * The low-level way to create a segment is to custom-make the bit buffer
     * and call the QrSegment() constructor with appropriate values.
     * This segment class imposes no length restrictions, but QR Codes have restrictions.
     * Even in the most favorable conditions, a QR Code can only hold 7089 characters of data.
     * Any segment longer than this is meaningless for the purpose of generating QR Codes.
     */
    class QrSegment {
        /*-- Constructor (low level) and fields --*/
        // Creates a new QR Code segment with the given attributes and data.
        // The character count (numChars) must agree with the mode and the bit buffer length,
        // but the constraint isn't checked. The given bit buffer is cloned and stored.
        constructor(
        // The mode indicator of this segment.
        mode, 
        // The length of this segment's unencoded data. Measured in characters for
        // numeric/alphanumeric/kanji mode, bytes for byte mode, and 0 for ECI mode.
        // Always zero or positive. Not the same as the data's bit length.
        numChars, 
        // The data bits of this segment. Accessed through getData().
        bitData) {
            this.mode = mode;
            this.numChars = numChars;
            this.bitData = bitData;
            if (numChars < 0)
                throw new RangeError("Invalid argument");
            this.bitData = bitData.slice(); // Make defensive copy
        }
        /*-- Static factory functions (mid level) --*/
        // Returns a segment representing the given binary data encoded in
        // byte mode. All input byte arrays are acceptable. Any text string
        // can be converted to UTF-8 bytes and encoded as a byte mode segment.
        static makeBytes(data) {
            let bb = [];
            for (const b of data)
                appendBits(b, 8, bb);
            return new QrSegment(QrSegment.Mode.BYTE, data.length, bb);
        }
        // Returns a segment representing the given string of decimal digits encoded in numeric mode.
        static makeNumeric(digits) {
            if (!QrSegment.isNumeric(digits))
                throw new RangeError("String contains non-numeric characters");
            let bb = [];
            for (let i = 0; i < digits.length;) { // Consume up to 3 digits per iteration
                const n = Math.min(digits.length - i, 3);
                appendBits(parseInt(digits.substr(i, n), 10), n * 3 + 1, bb);
                i += n;
            }
            return new QrSegment(QrSegment.Mode.NUMERIC, digits.length, bb);
        }
        // Returns a segment representing the given text string encoded in alphanumeric mode.
        // The characters allowed are: 0 to 9, A to Z (uppercase only), space,
        // dollar, percent, asterisk, plus, hyphen, period, slash, colon.
        static makeAlphanumeric(text) {
            if (!QrSegment.isAlphanumeric(text))
                throw new RangeError("String contains unencodable characters in alphanumeric mode");
            let bb = [];
            let i;
            for (i = 0; i + 2 <= text.length; i += 2) { // Process groups of 2
                let temp = QrSegment.ALPHANUMERIC_CHARSET.indexOf(text.charAt(i)) * 45;
                temp += QrSegment.ALPHANUMERIC_CHARSET.indexOf(text.charAt(i + 1));
                appendBits(temp, 11, bb);
            }
            if (i < text.length) // 1 character remaining
                appendBits(QrSegment.ALPHANUMERIC_CHARSET.indexOf(text.charAt(i)), 6, bb);
            return new QrSegment(QrSegment.Mode.ALPHANUMERIC, text.length, bb);
        }
        // Returns a new mutable list of zero or more segments to represent the given Unicode text string.
        // The result may use various segment modes and switch modes to optimize the length of the bit stream.
        static makeSegments(text) {
            // Select the most efficient segment encoding automatically
            if (text == "")
                return [];
            else if (QrSegment.isNumeric(text))
                return [QrSegment.makeNumeric(text)];
            else if (QrSegment.isAlphanumeric(text))
                return [QrSegment.makeAlphanumeric(text)];
            else
                return [QrSegment.makeBytes(QrSegment.toUtf8ByteArray(text))];
        }
        // Returns a segment representing an Extended Channel Interpretation
        // (ECI) designator with the given assignment value.
        static makeEci(assignVal) {
            let bb = [];
            if (assignVal < 0)
                throw new RangeError("ECI assignment value out of range");
            else if (assignVal < (1 << 7))
                appendBits(assignVal, 8, bb);
            else if (assignVal < (1 << 14)) {
                appendBits(0b10, 2, bb);
                appendBits(assignVal, 14, bb);
            }
            else if (assignVal < 1000000) {
                appendBits(0b110, 3, bb);
                appendBits(assignVal, 21, bb);
            }
            else
                throw new RangeError("ECI assignment value out of range");
            return new QrSegment(QrSegment.Mode.ECI, 0, bb);
        }
        // Tests whether the given string can be encoded as a segment in numeric mode.
        // A string is encodable iff each character is in the range 0 to 9.
        static isNumeric(text) {
            return QrSegment.NUMERIC_REGEX.test(text);
        }
        // Tests whether the given string can be encoded as a segment in alphanumeric mode.
        // A string is encodable iff each character is in the following set: 0 to 9, A to Z
        // (uppercase only), space, dollar, percent, asterisk, plus, hyphen, period, slash, colon.
        static isAlphanumeric(text) {
            return QrSegment.ALPHANUMERIC_REGEX.test(text);
        }
        /*-- Methods --*/
        // Returns a new copy of the data bits of this segment.
        getData() {
            return this.bitData.slice(); // Make defensive copy
        }
        // (Package-private) Calculates and returns the number of bits needed to encode the given segments at
        // the given version. The result is infinity if a segment has too many characters to fit its length field.
        static getTotalBits(segs, version) {
            let result = 0;
            for (const seg of segs) {
                const ccbits = seg.mode.numCharCountBits(version);
                if (seg.numChars >= (1 << ccbits))
                    return Infinity; // The segment's length doesn't fit the field's bit width
                result += 4 + ccbits + seg.bitData.length;
            }
            return result;
        }
        // Returns a new array of bytes representing the given string encoded in UTF-8.
        static toUtf8ByteArray(str) {
            str = encodeURI(str);
            let result = [];
            for (let i = 0; i < str.length; i++) {
                if (str.charAt(i) != "%")
                    result.push(str.charCodeAt(i));
                else {
                    result.push(parseInt(str.substr(i + 1, 2), 16));
                    i += 2;
                }
            }
            return result;
        }
    }
    /*-- Constants --*/
    // Describes precisely all strings that are encodable in numeric mode.
    QrSegment.NUMERIC_REGEX = /^[0-9]*$/;
    // Describes precisely all strings that are encodable in alphanumeric mode.
    QrSegment.ALPHANUMERIC_REGEX = /^[A-Z0-9 $%*+.\/:-]*$/;
    // The set of all legal characters in alphanumeric mode,
    // where each character value maps to the index in the string.
    QrSegment.ALPHANUMERIC_CHARSET = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ $%*+-./:";
    qrcodegen.QrSegment = QrSegment;
})(qrcodegen || (qrcodegen = {}));
/*---- Public helper enumeration ----*/
(function (qrcodegen) {
    var QrCode;
    (function (QrCode) {
        /*
         * The error correction level in a QR Code symbol. Immutable.
         */
        class Ecc {
            /*-- Constructor and fields --*/
            constructor(
            // In the range 0 to 3 (unsigned 2-bit integer).
            ordinal, 
            // (Package-private) In the range 0 to 3 (unsigned 2-bit integer).
            formatBits) {
                this.ordinal = ordinal;
                this.formatBits = formatBits;
            }
        }
        /*-- Constants --*/
        Ecc.LOW = new Ecc(0, 1); // The QR Code can tolerate about  7% erroneous codewords
        Ecc.MEDIUM = new Ecc(1, 0); // The QR Code can tolerate about 15% erroneous codewords
        Ecc.QUARTILE = new Ecc(2, 3); // The QR Code can tolerate about 25% erroneous codewords
        Ecc.HIGH = new Ecc(3, 2); // The QR Code can tolerate about 30% erroneous codewords
        QrCode.Ecc = Ecc;
    })(QrCode = qrcodegen.QrCode || (qrcodegen.QrCode = {}));
})(qrcodegen || (qrcodegen = {}));
/*---- Public helper enumeration ----*/
(function (qrcodegen) {
    var QrSegment;
    (function (QrSegment) {
        /*
         * Describes how a segment's data bits are interpreted. Immutable.
         */
        class Mode {
            /*-- Constructor and fields --*/
            constructor(
            // The mode indicator bits, which is a uint4 value (range 0 to 15).
            modeBits, 
            // Number of character count bits for three different version ranges.
            numBitsCharCount) {
                this.modeBits = modeBits;
                this.numBitsCharCount = numBitsCharCount;
            }
            /*-- Method --*/
            // (Package-private) Returns the bit width of the character count field for a segment in
            // this mode in a QR Code at the given version number. The result is in the range [0, 16].
            numCharCountBits(ver) {
                return this.numBitsCharCount[Math.floor((ver + 7) / 17)];
            }
        }
        /*-- Constants --*/
        Mode.NUMERIC = new Mode(0x1, [10, 12, 14]);
        Mode.ALPHANUMERIC = new Mode(0x2, [9, 11, 13]);
        Mode.BYTE = new Mode(0x4, [8, 16, 16]);
        Mode.KANJI = new Mode(0x8, [8, 10, 12]);
        Mode.ECI = new Mode(0x7, [0, 0, 0]);
        QrSegment.Mode = Mode;
    })(QrSegment = qrcodegen.QrSegment || (qrcodegen.QrSegment = {}));
})(qrcodegen || (qrcodegen = {}));