/*
 * QR Code generator library (compiled from TypeScript)
 *
 * Copyright (c) Project Nayuki. (MIT License)
 * https://www.nayuki.io/page/qr-code-generator-library
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy of
 * this software and associated documentation files (the "Software"), to deal in
 * the Software without restriction, including without limitation the rights to
 * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
 * the Software, and to permit persons to whom the Software is furnished to do so,
 * subject to the following conditions:
 * - The above copyright notice and this permission notice shall be included in
 *   all copies or substantial portions of the Software.
 * - The Software is provided "as is", without warranty of any kind, express or
 *   implied, including but not limited to the warranties of merchantability,
 *   fitness for a particular purpose and noninfringement. In no event shall the
 *   authors or copyright holders be liable for any claim, damages or other
 *   liability, whether in an action of contract, tort or otherwise, arising from,
 *   out of or in connection with the Software or the use or other dealings in the
 *   Software.
 */
"use strict";
export var qrcodegen;
(function (qrcodegen) {
  /*---- QR Code symbol class ----*/
  /*
   * A QR Code symbol, which is a type of two-dimension barcode.
   * Invented by Denso Wave and described in the ISO/IEC 18004 standard.
   * Instances of this class represent an immutable square grid of dark and light cells.
   * The class provides static factory functions to create a QR Code from text or binary data.
   * The class covers the QR Code Model 2 specification, supporting all versions (sizes)
   * from 1 to 40, all 4 error correction levels, and 4 character encoding modes.
   *
   * Ways to create a QR Code object:
   * - High level: Take the payload data and call QrCode.encodeText() or QrCode.encodeBinary().
   * - Mid level: Custom-make the list of segments and call QrCode.encodeSegments().
   * - Low level: Custom-make the array of data codeword bytes (including
   *   segment headers and final padding, excluding error correction codewords),
   *   supply the appropriate version number, and call the QrCode() constructor.
   * (Note that all ways require supplying the desired error correction level.)
   */
  class QrCode {
    /*-- Constructor (low level) and fields --*/
    // Creates a new QR Code with the given version number,
    // error correction level, data codeword bytes, and mask number.
    // This is a low-level API that most users should not use directly.
    // A mid-level API is the encodeSegments() function.
    constructor(
      // The version number of this QR Code, which is between 1 and 40 (inclusive).
      // This determines the size of this barcode.
      version,
      // The error correction level used in this QR Code.
      errorCorrectionLevel,
      dataCodewords,
      msk
    ) {
      this.version = version;
      this.errorCorrectionLevel = errorCorrectionLevel;
      // The modules of this QR Code (false = light, true = dark).
      // Immutable after constructor finishes. Accessed through getModule().
      this.modules = [];
      // Indicates function modules that are not subjected to masking. Discarded when constructor finishes.
      this.isFunction = [];
      // Check scalar arguments
      if (version < QrCode.MIN_VERSION || version > QrCode.MAX_VERSION)
        throw new RangeError("Version value out of range");
      if (msk < -1 || msk > 7) throw new RangeError("Mask value out of range");
      this.size = version * 4 + 17;
      // Initialize both grids to be size*size arrays of Boolean false
      let row = [];
      for (let i = 0; i < this.size; i++) row.push(false);
      for (let i = 0; i < this.size; i++) {
        this.modules.push(row.slice()); // Initially all light
        this.isFunction.push(row.slice());
      }
      // Compute ECC, draw modules
      this.drawFunctionPatterns();
      const allCodewords = this.addEccAndInterleave(dataCodewords);
      this.drawCodewords(allCodewords);
      // Do masking
      if (msk == -1) {
        // Automatically choose best mask
        let minPenalty = 1000000000;
        for (let i = 0; i < 8; i++) {
          this.applyMask(i);
          this.drawFormatBits(i);
          const penalty = this.getPenaltyScore();
          if (penalty < minPenalty) {
            msk = i;
            minPenalty = penalty;
          }
          this.applyMask(i); // Undoes the mask due to XOR
        }
      }
      assert(0 <= msk && msk <= 7);
      this.mask = msk;
      this.applyMask(msk); // Apply the final choice of mask
      this.drawFormatBits(msk); // Overwrite old format bits
      this.isFunction = [];
    }
    /*-- Static factory functions (high level) --*/
    // Returns a QR Code representing the given Unicode text string at the given error correction level.
    // As a conservative upper bound, this function is guaranteed to succeed for strings that have 738 or fewer
    // Unicode code points (not UTF-16 code units) if the low error correction level is used. The smallest possible
    // QR Code version is automatically chosen for the output. The ECC level of the result may be higher than the
    // ecl argument if it can be done without increasing the version.
    static encodeText(text, ecl) {
      const segs = qrcodegen.QrSegment.makeSegments(text);
      return QrCode.encodeSegments(segs, ecl);
    }
    // Returns a QR Code representing the given binary data at the given error correction level.
    // This function always encodes using the binary segment mode, not any text mode. The maximum number of
    // bytes allowed is 2953. The smallest possible QR Code version is automatically chosen for the output.
    // The ECC level of the result may be higher than the ecl argument if it can be done without increasing the version.
    static encodeBinary(data, ecl) {
      const seg = qrcodegen.QrSegment.makeBytes(data);
      return QrCode.encodeSegments([seg], ecl);
    }
    /*-- Static factory functions (mid level) --*/
    // Returns a QR Code representing the given segments with the given encoding parameters.
    // The smallest possible QR Code version within the given range is automatically
    // chosen for the output. Iff boostEcl is true, then the ECC level of the result
    // may be higher than the ecl argument if it can be done without increasing the
    // version. The mask number is either between 0 to 7 (inclusive) to force that
    // mask, or -1 to automatically choose an appropriate mask (which may be slow).
    // This function allows the user to create a custom sequence of segments that switches
    // between modes (such as alphanumeric and byte) to encode text in less space.
    // This is a mid-level API; the high-level API is encodeText() and encodeBinary().
    static encodeSegments(
      segs,
      ecl,
      minVersion = 1,
      maxVersion = 40,
      mask = -1,
      boostEcl = true
    ) {
      if (
        !(
          QrCode.MIN_VERSION <= minVersion &&
          minVersion <= maxVersion &&
          maxVersion <= QrCode.MAX_VERSION
        ) ||
        mask < -1 ||
        mask > 7
      )
        throw new RangeError("Invalid value");
      // Find the minimal version number to use
      let version;
      let dataUsedBits;
      for (version = minVersion; ; version++) {
        const dataCapacityBits = QrCode.getNumDataCodewords(version, ecl) * 8; // Number of data bits available
        const usedBits = QrSegment.getTotalBits(segs, version);
        if (usedBits <= dataCapacityBits) {
          dataUsedBits = usedBits;
          break; // This version number is found to be suitable
        }
        if (version >= maxVersion)
          // All versions in the range could not fit the given data
          throw new RangeError("Data too long");
      }
      // Increase the error correction level while the data still fits in the current version number
      for (const newEcl of [
        QrCode.Ecc.MEDIUM,
        QrCode.Ecc.QUARTILE,
        QrCode.Ecc.HIGH,
      ]) {
        // From low to high
        if (
          boostEcl &&
          dataUsedBits <= QrCode.getNumDataCodewords(version, newEcl) * 8
        )
          ecl = newEcl;
      }
      // Concatenate all segments to create the data bit string
      let bb = [];
      for (const seg of segs) {
        appendBits(seg.mode.modeBits, 4, bb);
        appendBits(seg.numChars, seg.mode.numCharCountBits(version), bb);
        for (const b of seg.getData()) bb.push(b);
      }
      assert(bb.length == dataUsedBits);
      // Add terminator and pad up to a byte if applicable
      const dataCapacityBits = QrCode.getNumDataCodewords(version, ecl) * 8;
      assert(bb.length <= dataCapacityBits);
      appendBits(0, Math.min(4, dataCapacityBits - bb.length), bb);
      appendBits(0, (8 - (bb.length % 8)) % 8, bb);
      assert(bb.length % 8 == 0);
      // Pad with alternating bytes until data capacity is reached
      for (
        let padByte = 0xec;
        bb.length < dataCapacityBits;
        padByte ^= 0xec ^ 0x11
      )
        appendBits(padByte, 8, bb);
      // Pack bits into bytes in big endian
      let dataCodewords = [];
      while (dataCodewords.length * 8 < bb.length) dataCodewords.push(0);
      bb.forEach((b, i) => (dataCodewords[i >>> 3] |= b << (7 - (i & 7))));
      // Create the QR Code object
      return new QrCode(version, ecl, dataCodewords, mask);
    }
    /*-- Accessor methods --*/
    // Returns the color of the module (pixel) at the given coordinates, which is false
    // for light or true for dark. The top left corner has the coordinates (x=0, y=0).
    // If the given coordinates are out of bounds, then false (light) is returned.
    getModule(x, y) {
      return (
        0 <= x && x < this.size && 0 <= y && y < this.size && this.modules[y][x]
      );
    }
    /*-- Private helper methods for constructor: Drawing function modules --*/
    // Reads this object's version field, and draws and marks all function modules.
    drawFunctionPatterns() {
      // Draw horizontal and vertical timing patterns
      for (let i = 0; i < this.size; i++) {
        this.setFunctionModule(6, i, i % 2 == 0);
        this.setFunctionModule(i, 6, i % 2 == 0);
      }
      // Draw 3 finder patterns (all corners except bottom right; overwrites some timing modules)
      this.drawFinderPattern(3, 3);
      this.drawFinderPattern(this.size - 4, 3);
      this.drawFinderPattern(3, this.size - 4);
      // Draw numerous alignment patterns
      const alignPatPos = this.getAlignmentPatternPositions();
      const numAlign = alignPatPos.length;
      for (let i = 0; i < numAlign; i++) {
        for (let j = 0; j < numAlign; j++) {
          // Don't draw on the three finder corners
          if (
            !(
              (i == 0 && j == 0) ||
              (i == 0 && j == numAlign - 1) ||
              (i == numAlign - 1 && j == 0)
            )
          )
            this.drawAlignmentPattern(alignPatPos[i], alignPatPos[j]);
        }
      }
      // Draw configuration data
      this.drawFormatBits(0); // Dummy mask value; overwritten later in the constructor
      this.drawVersion();
    }
    // Draws two copies of the format bits (with its own error correction code)
    // based on the given mask and this object's error correction level field.
    drawFormatBits(mask) {
      // Calculate error correction code and pack bits
      const data = (this.errorCorrectionLevel.formatBits << 3) | mask; // errCorrLvl is uint2, mask is uint3
      let rem = data;
      for (let i = 0; i < 10; i++) rem = (rem << 1) ^ ((rem >>> 9) * 0x537);
      const bits = ((data << 10) | rem) ^ 0x5412; // uint15
      assert(bits >>> 15 == 0);
      // Draw first copy
      for (let i = 0; i <= 5; i++)
        this.setFunctionModule(8, i, getBit(bits, i));
      this.setFunctionModule(8, 7, getBit(bits, 6));
      this.setFunctionModule(8, 8, getBit(bits, 7));
      this.setFunctionModule(7, 8, getBit(bits, 8));
      for (let i = 9; i < 15; i++)
        this.setFunctionModule(14 - i, 8, getBit(bits, i));
      // Draw second copy
      for (let i = 0; i < 8; i++)
        this.setFunctionModule(this.size - 1 - i, 8, getBit(bits, i));
      for (let i = 8; i < 15; i++)
        this.setFunctionModule(8, this.size - 15 + i, getBit(bits, i));
      this.setFunctionModule(8, this.size - 8, true); // Always dark
    }
    // Draws two copies of the version bits (with its own error correction code),
    // based on this object's version field, iff 7 <= version <= 40.
    drawVersion() {
      if (this.version < 7) return;
      // Calculate error correction code and pack bits
      let rem = this.version; // version is uint6, in the range [7, 40]
      for (let i = 0; i < 12; i++) rem = (rem << 1) ^ ((rem >>> 11) * 0x1f25);
      const bits = (this.version << 12) | rem; // uint18
      assert(bits >>> 18 == 0);
      // Draw two copies
      for (let i = 0; i < 18; i++) {
        const color = getBit(bits, i);
        const a = this.size - 11 + (i % 3);
        const b = Math.floor(i / 3);
        this.setFunctionModule(a, b, color);
        this.setFunctionModule(b, a, color);
      }
    }
    // Draws a 9*9 finder pattern including the border separator,
    // with the center module at (x, y). Modules can be out of bounds.
    drawFinderPattern(x, y) {
      for (let dy = -4; dy <= 4; dy++) {
        for (let dx = -4; dx <= 4; dx++) {
          const dist = Math.max(Math.abs(dx), Math.abs(dy)); // Chebyshev/infinity norm
          const xx = x + dx;
          const yy = y + dy;
          if (0 <= xx && xx < this.size && 0 <= yy && yy < this.size)
            this.setFunctionModule(xx, yy, dist != 2 && dist != 4);
        }
      }
    }
    // Draws a 5*5 alignment pattern, with the center module
    // at (x, y). All modules must be in bounds.
    drawAlignmentPattern(x, y) {
      for (let dy = -2; dy <= 2; dy++) {
        for (let dx = -2; dx <= 2; dx++)
          this.setFunctionModule(
            x + dx,
            y + dy,
            Math.max(Math.abs(dx), Math.abs(dy)) != 1
          );
      }
    }
    // Sets the color of a module and marks it as a function module.
    // Only used by the constructor. Coordinates must be in bounds.
    setFunctionModule(x, y, isDark) {
      this.modules[y][x] = isDark;
      this.isFunction[y][x] = true;
    }
    /*-- Private helper methods for constructor: Codewords and masking --*/
    // Returns a new byte string representing the given data with the appropriate error correction
    // codewords appended to it, based on this object's version and error correction level.
    addEccAndInterleave(data) {
      const ver = this.version;
      const ecl = this.errorCorrectionLevel;
      if (data.length != QrCode.getNumDataCodewords(ver, ecl))
        throw new RangeError("Invalid argument");
      // Calculate parameter numbers
      const numBlocks = QrCode.NUM_ERROR_CORRECTION_BLOCKS[ecl.ordinal][ver];
      const blockEccLen = QrCode.ECC_CODEWORDS_PER_BLOCK[ecl.ordinal][ver];
      const rawCodewords = Math.floor(QrCode.getNumRawDataModules(ver) / 8);
      const numShortBlocks = numBlocks - (rawCodewords % numBlocks);
      const shortBlockLen = Math.floor(rawCodewords / numBlocks);
      // Split data into blocks and append ECC to each block
      let blocks = [];
      const rsDiv = QrCode.reedSolomonComputeDivisor(blockEccLen);
      for (let i = 0, k = 0; i < numBlocks; i++) {
        let dat = data.slice(
          k,
          k + shortBlockLen - blockEccLen + (i < numShortBlocks ? 0 : 1)
        );
        k += dat.length;
        const ecc = QrCode.reedSolomonComputeRemainder(dat, rsDiv);
        if (i < numShortBlocks) dat.push(0);
        blocks.push(dat.concat(ecc));
      }
      // Interleave (not concatenate) the bytes from every block into a single sequence
      let result = [];
      for (let i = 0; i < blocks[0].length; i++) {
        blocks.forEach((block, j) => {
          // Skip the padding byte in short blocks
          if (i != shortBlockLen - blockEccLen || j >= numShortBlocks)
            result.push(block[i]);
        });
      }
      assert(result.length == rawCodewords);
      return result;
    }
    // Draws the given sequence of 8-bit codewords (data and error correction) onto the entire
    // data area of this QR Code. Function modules need to be marked off before this is called.
    drawCodewords(data) {
      if (
        data.length != Math.floor(QrCode.getNumRawDataModules(this.version) / 8)
      )
        throw new RangeError("Invalid argument");
      let i = 0; // Bit index into the data
      // Do the funny zigzag scan
      for (let right = this.size - 1; right >= 1; right -= 2) {
        // Index of right column in each column pair
        if (right == 6) right = 5;
        for (let vert = 0; vert < this.size; vert++) {
          // Vertical counter
          for (let j = 0; j < 2; j++) {
            const x = right - j; // Actual x coordinate
            const upward = ((right + 1) & 2) == 0;
            const y = upward ? this.size - 1 - vert : vert; // Actual y coordinate
            if (!this.isFunction[y][x] && i < data.length * 8) {
              this.modules[y][x] = getBit(data[i >>> 3], 7 - (i & 7));
              i++;
            }
            // If this QR Code has any remainder bits (0 to 7), they were assigned as
            // 0/false/light by the constructor and are left unchanged by this method
          }
        }
      }
      assert(i == data.length * 8);
    }
    // XORs the codeword modules in this QR Code with the given mask pattern.
    // The function modules must be marked and the codeword bits must be drawn
    // before masking. Due to the arithmetic of XOR, calling applyMask() with
    // the same mask value a second time will undo the mask. A final well-formed
    // QR Code needs exactly one (not zero, two, etc.) mask applied.
    applyMask(mask) {
      if (mask < 0 || mask > 7) throw new RangeError("Mask value out of range");
      for (let y = 0; y < this.size; y++) {
        for (let x = 0; x < this.size; x++) {
          let invert;
          switch (mask) {
            case 0:
              invert = (x + y) % 2 == 0;
              break;
            case 1:
              invert = y % 2 == 0;
              break;
            case 2:
              invert = x % 3 == 0;
              break;
            case 3:
              invert = (x + y) % 3 == 0;
              break;
            case 4:
              invert = (Math.floor(x / 3) + Math.floor(y / 2)) % 2 == 0;
              break;
            case 5:
              invert = ((x * y) % 2) + ((x * y) % 3) == 0;
              break;
            case 6:
              invert = (((x * y) % 2) + ((x * y) % 3)) % 2 == 0;
              break;
            case 7:
              invert = (((x + y) % 2) + ((x * y) % 3)) % 2 == 0;
              break;
            default:
              throw new Error("Unreachable");
          }
          if (!this.isFunction[y][x] && invert)
            this.modules[y][x] = !this.modules[y][x];
        }
      }
    }
    // Calculates and returns the penalty score based on state of this QR Code's current modules.
    // This is used by the automatic mask choice algorithm to find the mask pattern that yields the lowest score.
    getPenaltyScore() {
      let result = 0;
      // Adjacent modules in row having same color, and finder-like patterns
      for (let y = 0; y < this.size; y++) {
        let runColor = false;
        let runX = 0;
        let runHistory = [0, 0, 0, 0, 0, 0, 0];
        for (let x = 0; x < this.size; x++) {
          if (this.modules[y][x] == runColor) {
            runX++;
            if (runX == 5) result += QrCode.PENALTY_N1;
            else if (runX > 5) result++;
          } else {
            this.finderPenaltyAddHistory(runX, runHistory);
            if (!runColor)
              result +=
                this.finderPenaltyCountPatterns(runHistory) * QrCode.PENALTY_N3;
            runColor = this.modules[y][x];
            runX = 1;
          }
        }
        result +=
          this.finderPenaltyTerminateAndCount(runColor, runX, runHistory) *
          QrCode.PENALTY_N3;
      }
      // Adjacent modules in column having same color, and finder-like patterns
      for (let x = 0; x < this.size; x++) {
        let runColor = false;
        let runY = 0;
        let runHistory = [0, 0, 0, 0, 0, 0, 0];
        for (let y = 0; y < this.size; y++) {
          if (this.modules[y][x] == runColor) {
            runY++;
            if (runY == 5) result += QrCode.PENALTY_N1;
            else if (runY > 5) result++;
          } else {
            this.finderPenaltyAddHistory(runY, runHistory);
            if (!runColor)
              result +=
                this.finderPenaltyCountPatterns(runHistory) * QrCode.PENALTY_N3;
            runColor = this.modules[y][x];
            runY = 1;
          }
        }
        result +=
          this.finderPenaltyTerminateAndCount(runColor, runY, runHistory) *
          QrCode.PENALTY_N3;
      }
      // 2*2 blocks of modules having same color
      for (let y = 0; y < this.size - 1; y++) {
        for (let x = 0; x < this.size - 1; x++) {
          const color = this.modules[y][x];
          if (
            color == this.modules[y][x + 1] &&
            color == this.modules[y + 1][x] &&
            color == this.modules[y + 1][x + 1]
          )
            result += QrCode.PENALTY_N2;
        }
      }
      // Balance of dark and light modules
      let dark = 0;
      for (const row of this.modules)
        dark = row.reduce((sum, color) => sum + (color ? 1 : 0), dark);
      const total = this.size * this.size; // Note that size is odd, so dark/total != 1/2
      // Compute the smallest integer k >= 0 such that (45-5k)% <= dark/total <= (55+5k)%
      const k = Math.ceil(Math.abs(dark * 20 - total * 10) / total) - 1;
      assert(0 <= k && k <= 9);
      result += k * QrCode.PENALTY_N4;
      assert(0 <= result && result <= 2568888); // Non-tight upper bound based on default values of PENALTY_N1, ..., N4
      return result;
    }
    /*-- Private helper functions --*/
    // Returns an ascending list of positions of alignment patterns for this version number.
    // Each position is in the range [0,177), and are used on both the x and y axes.
    // This could be implemented as lookup table of 40 variable-length lists of integers.
    getAlignmentPatternPositions() {
      if (this.version == 1) return [];
      else {
        const numAlign = Math.floor(this.version / 7) + 2;
        const step =
          this.version == 32
            ? 26
            : Math.ceil((this.version * 4 + 4) / (numAlign * 2 - 2)) * 2;
        let result = [6];
        for (let pos = this.size - 7; result.length < numAlign; pos -= step)
          result.splice(1, 0, pos);
        return result;
      }
    }
    // Returns the number of data bits that can be stored in a QR Code of the given version number, after
    // all function modules are excluded. This includes remainder bits, so it might not be a multiple of 8.
    // The result is in the range [208, 29648]. This could be implemented as a 40-entry lookup table.
    static getNumRawDataModules(ver) {
      if (ver < QrCode.MIN_VERSION || ver > QrCode.MAX_VERSION)
        throw new RangeError("Version number out of range");
      let result = (16 * ver + 128) * ver + 64;
      if (ver >= 2) {
        const numAlign = Math.floor(ver / 7) + 2;
        result -= (25 * numAlign - 10) * numAlign - 55;
        if (ver >= 7) result -= 36;
      }
      assert(208 <= result && result <= 29648);
      return result;
    }
    // Returns the number of 8-bit data (i.e. not error correction) codewords contained in any
    // QR Code of the given version number and error correction level, with remainder bits discarded.
    // This stateless pure function could be implemented as a (40*4)-cell lookup table.
    static getNumDataCodewords(ver, ecl) {
      return (
        Math.floor(QrCode.getNumRawDataModules(ver) / 8) -
        QrCode.ECC_CODEWORDS_PER_BLOCK[ecl.ordinal][ver] *
          QrCode.NUM_ERROR_CORRECTION_BLOCKS[ecl.ordinal][ver]
      );
    }
    // Returns a Reed-Solomon ECC generator polynomial for the given degree. This could be
    // implemented as a lookup table over all possible parameter values, instead of as an algorithm.
    static reedSolomonComputeDivisor(degree) {
      if (degree < 1 || degree > 255)
        throw new RangeError("Degree out of range");
      // Polynomial coefficients are stored from highest to lowest power, excluding the leading term which is always 1.
      // For example the polynomial x^3 + 255x^2 + 8x + 93 is stored as the uint8 array [255, 8, 93].
      let result = [];
      for (let i = 0; i < degree - 1; i++) result.push(0);
      result.push(1); // Start off with the monomial x^0
      // Compute the product polynomial (x - r^0) * (x - r^1) * (x - r^2) * ... * (x - r^{degree-1}),
      // and drop the highest monomial term which is always 1x^degree.
      // Note that r = 0x02, which is a generator element of this field GF(2^8/0x11D).
      let root = 1;
      for (let i = 0; i < degree; i++) {
        // Multiply the current product by (x - r^i)
        for (let j = 0; j < result.length; j++) {
          result[j] = QrCode.reedSolomonMultiply(result[j], root);
          if (j + 1 < result.length) result[j] ^= result[j + 1];
        }
        root = QrCode.reedSolomonMultiply(root, 0x02);
      }
      return result;
    }
    // Returns the Reed-Solomon error correction codeword for the given data and divisor polynomials.
    static reedSolomonComputeRemainder(data, divisor) {
      let result = divisor.map((_) => 0);
      for (const b of data) {
        // Polynomial division
        const factor = b ^ result.shift();
        result.push(0);
        divisor.forEach(
          (coef, i) => (result[i] ^= QrCode.reedSolomonMultiply(coef, factor))
        );
      }
      return result;
    }
    // Returns the product of the two given field elements modulo GF(2^8/0x11D). The arguments and result
    // are unsigned 8-bit integers. This could be implemented as a lookup table of 256*256 entries of uint8.
    static reedSolomonMultiply(x, y) {
      if (x >>> 8 != 0 || y >>> 8 != 0)
        throw new RangeError("Byte out of range");
      // Russian peasant multiplication
      let z = 0;
      for (let i = 7; i >= 0; i--) {
        z = (z << 1) ^ ((z >>> 7) * 0x11d);
        z ^= ((y >>> i) & 1) * x;
      }
      assert(z >>> 8 == 0);
      return z;
    }
    // Can only be called immediately after a light run is added, and
    // returns either 0, 1, or 2. A helper function for getPenaltyScore().
    finderPenaltyCountPatterns(runHistory) {
      const n = runHistory[1];
      assert(n <= this.size * 3);
      const core =
        n > 0 &&
        runHistory[2] == n &&
        runHistory[3] == n * 3 &&
        runHistory[4] == n &&
        runHistory[5] == n;
      return (
        (core && runHistory[0] >= n * 4 && runHistory[6] >= n ? 1 : 0) +
        (core && runHistory[6] >= n * 4 && runHistory[0] >= n ? 1 : 0)
      );
    }
    // Must be called at the end of a line (row or column) of modules. A helper function for getPenaltyScore().
    finderPenaltyTerminateAndCount(
      currentRunColor,
      currentRunLength,
      runHistory
    ) {
      if (currentRunColor) {
        // Terminate dark run
        this.finderPenaltyAddHistory(currentRunLength, runHistory);
        currentRunLength = 0;
      }
      currentRunLength += this.size; // Add light border to final run
      this.finderPenaltyAddHistory(currentRunLength, runHistory);
      return this.finderPenaltyCountPatterns(runHistory);
    }
    // Pushes the given value to the front and drops the last value. A helper function for getPenaltyScore().
    finderPenaltyAddHistory(currentRunLength, runHistory) {
      if (runHistory[0] == 0) currentRunLength += this.size; // Add light border to initial run
      runHistory.pop();
      runHistory.unshift(currentRunLength);
    }
  }
  /*-- Constants and tables --*/
  // The minimum version number supported in the QR Code Model 2 standard.
  QrCode.MIN_VERSION = 1;
  // The maximum version number supported in the QR Code Model 2 standard.
  QrCode.MAX_VERSION = 40;
  // For use in getPenaltyScore(), when evaluating which mask is best.
  QrCode.PENALTY_N1 = 3;
  QrCode.PENALTY_N2 = 3;
  QrCode.PENALTY_N3 = 40;
  QrCode.PENALTY_N4 = 10;
  QrCode.ECC_CODEWORDS_PER_BLOCK = [
    // Version: (note that index 0 is for padding, and is set to an illegal value)
    //0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40    Error correction level
    [
      -1, 7, 10, 15, 20, 26, 18, 20, 24, 30, 18, 20, 24, 26, 30, 22, 24, 28, 30,
      28, 28, 28, 28, 30, 30, 26, 28, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30,
      30, 30, 30, 30,
    ],
    [
      -1, 10, 16, 26, 18, 24, 16, 18, 22, 22, 26, 30, 22, 22, 24, 24, 28, 28,
      26, 26, 26, 26, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
      28, 28, 28, 28, 28,
    ],
    [
      -1, 13, 22, 18, 26, 18, 24, 18, 22, 20, 24, 28, 26, 24, 20, 30, 24, 28,
      28, 26, 30, 28, 30, 30, 30, 30, 28, 30, 30, 30, 30, 30, 30, 30, 30, 30,
      30, 30, 30, 30, 30,
    ],
    [
      -1, 17, 28, 22, 16, 22, 28, 26, 26, 24, 28, 24, 28, 22, 24, 24, 30, 28,
      28, 26, 28, 30, 24, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30,
      30, 30, 30, 30, 30,
    ], // High
  ];
  QrCode.NUM_ERROR_CORRECTION_BLOCKS = [
    // Version: (note that index 0 is for padding, and is set to an illegal value)
    //0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40    Error correction level
    [
      -1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 4, 4, 4, 4, 4, 6, 6, 6, 6, 7, 8, 8, 9, 9,
      10, 12, 12, 12, 13, 14, 15, 16, 17, 18, 19, 19, 20, 21, 22, 24, 25,
    ],
    [
      -1, 1, 1, 1, 2, 2, 4, 4, 4, 5, 5, 5, 8, 9, 9, 10, 10, 11, 13, 14, 16, 17,
      17, 18, 20, 21, 23, 25, 26, 28, 29, 31, 33, 35, 37, 38, 40, 43, 45, 47,
      49,
    ],
    [
      -1, 1, 1, 2, 2, 4, 4, 6, 6, 8, 8, 8, 10, 12, 16, 12, 17, 16, 18, 21, 20,
      23, 23, 25, 27, 29, 34, 34, 35, 38, 40, 43, 45, 48, 51, 53, 56, 59, 62,
      65, 68,
    ],
    [
      -1, 1, 1, 2, 4, 4, 4, 5, 6, 8, 8, 11, 11, 16, 16, 18, 16, 19, 21, 25, 25,
      25, 34, 30, 32, 35, 37, 40, 42, 45, 48, 51, 54, 57, 60, 63, 66, 70, 74,
      77, 81,
    ], // High
  ];
  qrcodegen.QrCode = QrCode;
  // Appends the given number of low-order bits of the given value
  // to the given buffer. Requires 0 <= len <= 31 and 0 <= val < 2^len.
  function appendBits(val, len, bb) {
    if (len < 0 || len > 31 || val >>> len != 0)
      throw new RangeError("Value out of range");
    for (
      let i = len - 1;
      i >= 0;
      i-- // Append bit by bit
    )
      bb.push((val >>> i) & 1);
  }
  // Returns true iff the i'th bit of x is set to 1.
  function getBit(x, i) {
    return ((x >>> i) & 1) != 0;
  }
  // Throws an exception if the given condition is false.
  function assert(cond) {
    if (!cond) throw new Error("Assertion error");
  }
  /*---- Data segment class ----*/
  /*
   * A segment of character/binary/control data in a QR Code symbol.
   * Instances of this class are immutable.
   * The mid-level way to create a segment is to take the payload data
   * and call a static factory function such as QrSegment.makeNumeric().
   * The low-level way to create a segment is to custom-make the bit buffer
   * and call the QrSegment() constructor with appropriate values.
   * This segment class imposes no length restrictions, but QR Codes have restrictions.
   * Even in the most favorable conditions, a QR Code can only hold 7089 characters of data.
   * Any segment longer than this is meaningless for the purpose of generating QR Codes.
   */
  class QrSegment {
    /*-- Constructor (low level) and fields --*/
    // Creates a new QR Code segment with the given attributes and data.
    // The character count (numChars) must agree with the mode and the bit buffer length,
    // but the constraint isn't checked. The given bit buffer is cloned and stored.
    constructor(
      // The mode indicator of this segment.
      mode,
      // The length of this segment's unencoded data. Measured in characters for
      // numeric/alphanumeric/kanji mode, bytes for byte mode, and 0 for ECI mode.
      // Always zero or positive. Not the same as the data's bit length.
      numChars,
      // The data bits of this segment. Accessed through getData().
      bitData
    ) {
      this.mode = mode;
      this.numChars = numChars;
      this.bitData = bitData;
      if (numChars < 0) throw new RangeError("Invalid argument");
      this.bitData = bitData.slice(); // Make defensive copy
    }
    /*-- Static factory functions (mid level) --*/
    // Returns a segment representing the given binary data encoded in
    // byte mode. All input byte arrays are acceptable. Any text string
    // can be converted to UTF-8 bytes and encoded as a byte mode segment.
    static makeBytes(data) {
      let bb = [];
      for (const b of data) appendBits(b, 8, bb);
      return new QrSegment(QrSegment.Mode.BYTE, data.length, bb);
    }
    // Returns a segment representing the given string of decimal digits encoded in numeric mode.
    static makeNumeric(digits) {
      if (!QrSegment.isNumeric(digits))
        throw new RangeError("String contains non-numeric characters");
      let bb = [];
      for (let i = 0; i < digits.length; ) {
        // Consume up to 3 digits per iteration
        const n = Math.min(digits.length - i, 3);
        appendBits(parseInt(digits.substr(i, n), 10), n * 3 + 1, bb);
        i += n;
      }
      return new QrSegment(QrSegment.Mode.NUMERIC, digits.length, bb);
    }
    // Returns a segment representing the given text string encoded in alphanumeric mode.
    // The characters allowed are: 0 to 9, A to Z (uppercase only), space,
    // dollar, percent, asterisk, plus, hyphen, period, slash, colon.
    static makeAlphanumeric(text) {
      if (!QrSegment.isAlphanumeric(text))
        throw new RangeError(
          "String contains unencodable characters in alphanumeric mode"
        );
      let bb = [];
      let i;
      for (i = 0; i + 2 <= text.length; i += 2) {
        // Process groups of 2
        let temp = QrSegment.ALPHANUMERIC_CHARSET.indexOf(text.charAt(i)) * 45;
        temp += QrSegment.ALPHANUMERIC_CHARSET.indexOf(text.charAt(i + 1));
        appendBits(temp, 11, bb);
      }
      if (i < text.length)
        // 1 character remaining
        appendBits(
          QrSegment.ALPHANUMERIC_CHARSET.indexOf(text.charAt(i)),
          6,
          bb
        );
      return new QrSegment(QrSegment.Mode.ALPHANUMERIC, text.length, bb);
    }
    // Returns a new mutable list of zero or more segments to represent the given Unicode text string.
    // The result may use various segment modes and switch modes to optimize the length of the bit stream.
    static makeSegments(text) {
      // Select the most efficient segment encoding automatically
      if (text == "") return [];
      else if (QrSegment.isNumeric(text)) return [QrSegment.makeNumeric(text)];
      else if (QrSegment.isAlphanumeric(text))
        return [QrSegment.makeAlphanumeric(text)];
      else return [QrSegment.makeBytes(QrSegment.toUtf8ByteArray(text))];
    }
    // Returns a segment representing an Extended Channel Interpretation
    // (ECI) designator with the given assignment value.
    static makeEci(assignVal) {
      let bb = [];
      if (assignVal < 0)
        throw new RangeError("ECI assignment value out of range");
      else if (assignVal < 1 << 7) appendBits(assignVal, 8, bb);
      else if (assignVal < 1 << 14) {
        appendBits(0b10, 2, bb);
        appendBits(assignVal, 14, bb);
      } else if (assignVal < 1000000) {
        appendBits(0b110, 3, bb);
        appendBits(assignVal, 21, bb);
      } else throw new RangeError("ECI assignment value out of range");
      return new QrSegment(QrSegment.Mode.ECI, 0, bb);
    }
    // Tests whether the given string can be encoded as a segment in numeric mode.
    // A string is encodable iff each character is in the range 0 to 9.
    static isNumeric(text) {
      return QrSegment.NUMERIC_REGEX.test(text);
    }
    // Tests whether the given string can be encoded as a segment in alphanumeric mode.
    // A string is encodable iff each character is in the following set: 0 to 9, A to Z
    // (uppercase only), space, dollar, percent, asterisk, plus, hyphen, period, slash, colon.
    static isAlphanumeric(text) {
      return QrSegment.ALPHANUMERIC_REGEX.test(text);
    }
    /*-- Methods --*/
    // Returns a new copy of the data bits of this segment.
    getData() {
      return this.bitData.slice(); // Make defensive copy
    }
    // (Package-private) Calculates and returns the number of bits needed to encode the given segments at
    // the given version. The result is infinity if a segment has too many characters to fit its length field.
    static getTotalBits(segs, version) {
      let result = 0;
      for (const seg of segs) {
        const ccbits = seg.mode.numCharCountBits(version);
        if (seg.numChars >= 1 << ccbits) return Infinity; // The segment's length doesn't fit the field's bit width
        result += 4 + ccbits + seg.bitData.length;
      }
      return result;
    }
    // Returns a new array of bytes representing the given string encoded in UTF-8.
    static toUtf8ByteArray(str) {
      str = encodeURI(str);
      let result = [];
      for (let i = 0; i < str.length; i++) {
        if (str.charAt(i) != "%") result.push(str.charCodeAt(i));
        else {
          result.push(parseInt(str.substr(i + 1, 2), 16));
          i += 2;
        }
      }
      return result;
    }
  }
  /*-- Constants --*/
  // Describes precisely all strings that are encodable in numeric mode.
  QrSegment.NUMERIC_REGEX = /^[0-9]*$/;
  // Describes precisely all strings that are encodable in alphanumeric mode.
  QrSegment.ALPHANUMERIC_REGEX = /^[A-Z0-9 $%*+.\/:-]*$/;
  // The set of all legal characters in alphanumeric mode,
  // where each character value maps to the index in the string.
  QrSegment.ALPHANUMERIC_CHARSET =
    "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ $%*+-./:";
  qrcodegen.QrSegment = QrSegment;
})(qrcodegen || (qrcodegen = {}));
/*---- Public helper enumeration ----*/
(function (qrcodegen) {
  var QrCode;
  (function (QrCode) {
    /*
     * The error correction level in a QR Code symbol. Immutable.
     */
    class Ecc {
      /*-- Constructor and fields --*/
      constructor(
        // In the range 0 to 3 (unsigned 2-bit integer).
        ordinal,
        // (Package-private) In the range 0 to 3 (unsigned 2-bit integer).
        formatBits
      ) {
        this.ordinal = ordinal;
        this.formatBits = formatBits;
      }
    }
    /*-- Constants --*/
    Ecc.LOW = new Ecc(0, 1); // The QR Code can tolerate about  7% erroneous codewords
    Ecc.MEDIUM = new Ecc(1, 0); // The QR Code can tolerate about 15% erroneous codewords
    Ecc.QUARTILE = new Ecc(2, 3); // The QR Code can tolerate about 25% erroneous codewords
    Ecc.HIGH = new Ecc(3, 2); // The QR Code can tolerate about 30% erroneous codewords
    QrCode.Ecc = Ecc;
  })((QrCode = qrcodegen.QrCode || (qrcodegen.QrCode = {})));
})(qrcodegen || (qrcodegen = {}));
/*---- Public helper enumeration ----*/
(function (qrcodegen) {
  var QrSegment;
  (function (QrSegment) {
    /*
     * Describes how a segment's data bits are interpreted. Immutable.
     */
    class Mode {
      /*-- Constructor and fields --*/
      constructor(
        // The mode indicator bits, which is a uint4 value (range 0 to 15).
        modeBits,
        // Number of character count bits for three different version ranges.
        numBitsCharCount
      ) {
        this.modeBits = modeBits;
        this.numBitsCharCount = numBitsCharCount;
      }
      /*-- Method --*/
      // (Package-private) Returns the bit width of the character count field for a segment in
      // this mode in a QR Code at the given version number. The result is in the range [0, 16].
      numCharCountBits(ver) {
        return this.numBitsCharCount[Math.floor((ver + 7) / 17)];
      }
    }
    /*-- Constants --*/
    Mode.NUMERIC = new Mode(0x1, [10, 12, 14]);
    Mode.ALPHANUMERIC = new Mode(0x2, [9, 11, 13]);
    Mode.BYTE = new Mode(0x4, [8, 16, 16]);
    Mode.KANJI = new Mode(0x8, [8, 10, 12]);
    Mode.ECI = new Mode(0x7, [0, 0, 0]);
    QrSegment.Mode = Mode;
  })((QrSegment = qrcodegen.QrSegment || (qrcodegen.QrSegment = {})));
})(qrcodegen || (qrcodegen = {}));